Pola Professional 35\% Powder

SDI (North America) Inc.

Version No: $\mathbf{8 . 1}$ Safety Data Sheet according to OSHA HazCom Standard (2012) requirements	Issue Date: 20/08/2021 Print Date: 21/11/2023 L.GHS.USA.EN
SECTION 1 Identification	
Product Identifier	
Product name	Pola Professional 35\% Powder
Chemical Name	Not Applicable
Synonyms	Not Available
Chemical formula	Not Applicable
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use

Relevant identified uses	Professional Dental use: To medically bleach endodontically treated teeth, to be performed by a dentist.		
Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party			
Registered company name	SDI (North America) Inc.	SDI Limited	SDI HOLDINGS PTY LTD DO
Address	1279 Hamilton Parkway Itasca IL 60143 United States	3-15 Brunsdon Street Bayswater VIC 3153 Australia	Rua Dr. Reinaldo Schmithausen 3141 Cordeiros Itajaí - SC - CEP 88310-004 Brazil
Telephone	+1630 3619200	+6138727 7111	+55 1130927100
Fax	Not Available	+6138727 7222	Not Available
Website	www.sdi.com.au	www.sdi.com.au	http://www.sdi.com.au/
Email	USA.Canada@sdi.com.au	info@sdi.com.au	Brasil@sdi.com.au
Registered company name	SDI Germany GmbH		
Address	Hansestrasse 85 Cologne D-51149 Germany		
Telephone	+49 0220392550		
Fax	+49 022039255200		
Website	www.sdi.com.au		
Email	germany@sdi.com.au		

Emergency phone number

Association / Organisation	SDI Limited	CHEMWATCH EMERGENCY RESPONSE (24/7)
Emergency telephone numbers	131126 Poisons Information Centre	$+1855-237-5573$
Other emergency telephone numbers	+61387277111	+61395733188

Once connected and if the message is not in your preferred language then please dial 01
Una vez conectado y si el mensaje no está en su idioma preferido, por favor marque 02

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

NFPA 704 diamond

0

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White $=$ Special (Oxidizer or water reactive substances)

Hazard pictogram(s)	
Signal word	Warning

Hazard statement(s)

H315	Causes skin irritation.
H319	Causes serious eye irritation.
H335	May cause respiratory irritation.

Hazard(s) not otherwise classified

 Not ApplicablePrecautionary statement(s) Prevention

P271	Use only outdoors or in a well-ventilated area.
$\mathbf{P 2 6 1}$	Avoid breathing dust/fumes.
$\mathbf{P 2 8 0}$	Wear protective gloves, protective clothing, eye protection and face protection.
$\mathbf{P 2 6 4}$	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

$\mathbf{P 3 0 5 + P 3 5 1 + P 3 3 8}$	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
$\mathbf{P 3 1 2}$	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
$\mathbf{P 3 3 7 + P 3 1 3}$	If eye irritation persists: Get medical advice/attention.
$\mathbf{P 3 0 2 + P 3 5 2}$	IF ON SKIN: Wash with plenty of water and soap.
$\mathbf{P 3 0 4 + P 3 4 0}$	IF INHALED: Remove person to fresh air and keep comfortable for breathing.
$\mathbf{P 3 3 2 + P 3 1 3}$	If skin irritation occurs: Get medical advice/attention.
$\mathbf{P 3 6 2 + P 3 6 4}$	Take off contaminated clothing and wash it before reuse.

Precautionary statement(s) Storage	
P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

[^0]
SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	\%[weight]	Name
$7631-86-9$	$70-75$	$\underline{\text { silica amorphous }}$

SECTION 4 First-aid measures

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: - Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Seek medical attention without delay; if pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: - Immediately remove all contaminated clothing, including footwear. - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation.
Inhalation	- If fumes or combustion products are inhaled remove from contaminated area. - Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - Transport to hospital, or doctor, without delay.
Ingestion	If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully.

Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
Seek medical advice.

Most important symptoms and effects, both acute and delayed
See Section 11

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5 Fire-fighting measures

Extinguishing media

- Water spray or fog

Foam.

- Dry chemical powder

BCF (where regulations permit).
Carbon dioxide.

Special hazards arising from the substrate or mixture
Fire Incompatibility None known.

Special protective equipment and precautions for fire-fighters

Fire Fighting	* Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves in the event of a fire. - Prevent, by any means available, spillage from entering drains or water courses. - Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	- Non combustible. - Not considered a significant fire risk, however containers may burn. May emit poisonous fumes. May emit corrosive fumes. Decomposes on heating and produces: carbon dioxide (CO2) carbon monoxide (CO) sulfur oxides (SOx)

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions

See section 12
Methods and material for containment and cleaning up

Minor Spills	- Clean up all spills immediately. - Avoid breathing dust and contact with skin and eyes. - Wear protective clothing, gloves, safety glasses and dust respirator. - Use dry clean up procedures and avoid generating dust. - Sweep up, shovel up or - Vacuum up (consider explosion-proof machines designed to be grounded during storage and use). - Place spilled material in clean, dry, sealable, labelled container.
Major Spills	Moderate hazard. - CAUTION: Advise personnel in area. - Alert Emergency Services and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. - ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. - If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

	* Avoid all personal contact, including inhalation.
Safe handling	Wear protective clothing when risk of exposure occurs.
	Use in a well-ventilated area.

	- Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. + DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. + Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Other information	Store between 2 and 8 deg C . Do not store in direct sunlight. Store in a dry and well ventilated-area, away from heat and sunlight.
Conditions for safe storage, including any incompatibilities	
Suitable container	- Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks.
Storage incompatibility	- Avoid strong acids, bases.

SECTION 8 Exposure controls / personal protection

Control parameters							
Occupational Exposure Limits (OEL)							
INGREDIENT DATA							
Source	Ingredient	Material name		TWA	STEL	Peak	Notes
US OSHA Permissible Exposure Limits (PELs) Table Z-1	silica amorphous	Particulates Not Otherwise Regulated (PNOR)Respirable fraction		$5 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-1	silica amorphous	Particulates Not Otherwise Regulated (PNOR)Total dust		$15 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available
US OSHA Permissible Exposure Limits (PELs) Table Z-3	silica amorphous	Amorphous, including natural diatomaceous earth		80 (\%SiO2) mg/m3 / 20 mppcf	Not Available	Not Available	Not Available
US NIOSH Recommended Exposure Limits (RELs)	silica amorphous	Silica, amorphous		$6 \mathrm{mg} / \mathrm{m} 3$	Not Available	Not Available	Not Available
Emergency Limits							
Ingredient	TEEL-1		TEEL-2		TEEL-3		
silica amorphous	$18 \mathrm{mg} / \mathrm{m} 3$		$200 \mathrm{mg} / \mathrm{m} 3$		$1,200 \mathrm{mg} / \mathrm{m} 3$		
silica amorphous	$18 \mathrm{mg} / \mathrm{m} 3$		$100 \mathrm{mg} / \mathrm{m} 3$		$630 \mathrm{mg} / \mathrm{m} 3$		
silica amorphous	$120 \mathrm{mg} / \mathrm{m} 3$		$1,300 \mathrm{mg} / \mathrm{m} 3$		$7,900 \mathrm{mg} / \mathrm{m} 3$		
silica amorphous	$45 \mathrm{mg} / \mathrm{m} 3$		$500 \mathrm{mg} / \mathrm{m} 3$		$3,000 \mathrm{mg} / \mathrm{m} 3$		
silica amorphous	$18 \mathrm{mg} / \mathrm{m} 3$		$740 \mathrm{mg} / \mathrm{m} 3$		$4,500 \mathrm{mg} / \mathrm{m} 3$		
Ingredient	Original IDLH			Revised IDLH			
silica amorphous	$3,000 \mathrm{mg} / \mathrm{m} 3$			Not Available			

MATERIAL DATA
Exposure controls

Appropriate engineering
controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.
The basic types of engineering controls are:
Process controls which involve changing the way a job activity or process is done to reduce the risk.
Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
* If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered

Such protection might consist of:
(a): particle dust respirators, if necessary, combined with an absorption cartridge;
(b): filter respirators with absorption cartridge or canister of the right type;
(c): fresh-air hoods or masks.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

| Type of Contaminant: | Air Speed: |
| :--- | :--- | :--- |
| direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active
 generation into zone of rapid air motion) | $1-2.5 \mathrm{~m} / \mathrm{s}(200-500$ |
| grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone
 of very high rapid air motion). | $2.5-10 \mathrm{~m} / \mathrm{s}(500-2000$ |
| $\mathrm{f} / \mathrm{min})$. | |

Within each range the appropriate value depends on:

	Lower end of the range	Upper end of the range
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
	2. Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
	3: Intermittent, low production.	3: High production, heavy use
	4: Large hood or large air mass in motion Simple theory shows that air velocity falls rapidly with distan with the square of distance from the extraction point (in simp accordingly, after reference to distance from the contaminat $4-10 \mathrm{~m} / \mathrm{s}(800-2000 \mathrm{f} / \mathrm{min})$ for extraction of crusher dusts ge producing performance deficits within the extraction apparat more when extraction systems are installed or used.	4: Small hood-local control only away from the opening of a simp cases). Therefore the air speed source. The air velocity at the extren rated 2 metres distant from the ext make it essential that theoretica
Individual protection measures, such as personal protective equipment		
Eye and face protection	- Safety glasses with side shields. - Chemical goggles. [AS/NZS 1337.1, EN166 or national - Contact lenses may pose a special hazard; soft contact the wearing of lenses or restrictions on use, should be and adsorption for the class of chemicals in use and an their removal and suitable equipment should be readily remove contact lens as soon as practicable. Lens should a clean environment only after workers have washed hand	uivalent] ses may absorb and concentrat ated for each workplace or task. count of injury experience. Medi ailable. In the event of chemical be removed at the first signs of e s thoroughly. [CDC NIOSH Curr
Skin protection	See Hand protection below	
Hands/feet protection	The selection of suitable gloves does not only depend on th manufacturer. Where the chemical is a preparation of sever and has therefore to be checked prior to the application. The exact break through time for substances has to be obta making a final choice. Personal hygiene is a key element of effective hand care. G washed and dried thoroughly. Application of a non-perfumed Suitability and durability of glove type is dependent on usag - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN - When prolonged or frequently repeated contact may occur minutes according to EN 374 , AS/NZS 2161.10.1 or nationa - When only brief contact is expected, a glove with a protection 374 , AS/NZS 2161.10.1 or national equivalent) is recommen - Some glove polymer types are less affected by movement - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are - Excellent when breakthrough time $>480 \mathrm{~min}$ - Good when breakthrough time $>20 \mathrm{~min}$ - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically gr It should be emphasised that glove thickness is not necessaril efficiency of the glove will be dependent on the exact composit consideration of the task requirements and knowledge of br Glove thickness may also vary depending on the glove man data should always be taken into account to ensure selectio Note: Depending on the activity being conducted, gloves of - Thinner gloves (down to 0.1 mm or less) may be required likely to give short duration protection and would normally be - Thicker gloves (up to 3 mm or more) may be required whe puncture potential Gloves must only be worn on clean hands. After using glove moisturiser is recommended.	material, but also on further mark substances, the resistance of the d from the manufacturer of the es must only be worn on clean h oisturiser is recommended. mportant factors in the selection 4, US F739, AS/NZS 2161.1 or glove with a protection class of 5 quivalent) is recommended. class of 3 or higher (breakthrou d. d this should be taken into acco ed as: ter than 0.35 mm , are recommen a good predictor of glove resist ion of the glove material. Theref through times. cturer, the glove type and the gl f the most appropriate glove for ying thickness may be required ere a high degree of manual dex ust for single use applications, th there is a mechanical (as well as hands should be washed and dr
Body protection	See Other protection below	
Other protection	- Overalls. - P.V.C apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit.	

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 \& 1715, EN 143:2000 \& 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to $10 \times \mathrm{ES}$	P1 Air-line*		PAPR-P1
up to $50 \times \mathrm{ES}$	Air-line**	P2	PAPR-P2
up to $100 \times$ ES	-	P3	-
		Air-line*	-

```
100+x ES
-
Air-line**
PAPR-P3
* - Negative pressure demand ** - Continuous flow
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, \(\mathrm{K}=\) Ammonia( NH 3 ), \(\mathrm{Hg}=\) Mercury, \(\mathrm{NO}=\) Oxides of nitrogen, \(\mathrm{MB}=\) Methyl bromide, \(\mathrm{AX}=\) Low boiling point organic compounds(below 65 degC)
Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- Use approved positive flow mask if significant quantities of dust becomes airborne.
Try to avoid creating dust conditions.
```

SECTION 9 Physical and chemical properties
Information on basic physical and chemical properties

Appearance	Fluffy white speckled powder, insoluble in water.		
Physical state	Divided Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient \mathbf{n}-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (${ }^{\circ} \mathrm{C}$)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (${ }^{\circ} \mathrm{C}$)	Not Available
Melting point / freezing point $\left({ }^{\circ} \mathrm{C}\right)$	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (${ }^{\circ} \mathrm{C}$)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (${ }^{\circ} \mathrm{C}$)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (\%)	Not Available	Surface Tension (dyn/cm or mN / m)	Not Applicable
Lower Explosive Limit (\%)	Not Available	Volatile Component (\%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1\%)	Not Available
Vapour density ($\mathrm{Air}=1$)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	Prstable in the presence of incompatible materials. Possibility of hazardous considered stable. reactions
See section 7	

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.
The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.	
Ingestion	
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such

inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.
The material may accentuate any pre-existing dermatitis condition
Open cuts, abraded or irritated skin should not be exposed to this material
Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may
Eye

Chronic biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

Pola Professional 35\% Powder	TOXICITY	IRRITATION
	Not Available	Not Available
silica amorphous	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ${ }^{[1]}$	Eye (rabbit): non-irritating ** [Grace]
	Inhalation(Rat) LC50: $>0.09<0.84 \mathrm{mg} / 4 \mathrm{~h}^{[1]}$	Eye: no adverse effect observed (not irritating) ${ }^{[1]}$
	Oral (Rat) LD50: >1000 mg/kg ${ }^{[1]}$	Skin (rabbit): non-irritating *
		Skin: no adverse effect observed (not irritating) ${ }^{[1]}$
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances	

Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS]
For silica amorphous:
Derived No Adverse Effects Level (NOAEL) in the range of $1000 \mathrm{mg} / \mathrm{kg} / \mathrm{d}$.
In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin.
When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals.
After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification.
Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.
Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact.
Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure.
Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from $0.5 \mathrm{mg} / \mathrm{m} 3$ to $150 \mathrm{mg} / \mathrm{m} 3$. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 $\mathrm{mg} / \mathrm{m} 3$. When available, the no-observed adverse effect levels (NOAELs) were between $0.5 \mathrm{and} 10 \mathrm{mg} / \mathrm{m} 3$. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL.
Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected.
For Synthetic Amorphous Silica (SAS)
Repeated dose toxicity
Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet.
Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) $=1.3 \mathrm{mg} / \mathrm{m} 3$ based on mild reversible effects in the lungs. Inhalation (rat), 90 days, LOEL $=1 \mathrm{mg} / \mathrm{m} 3$ based on reversible effects in the lungs and effects in the nasal cavity.
For silane treated synthetic amorphous silica:
Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested
There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS.
The substance is classified by IARC as Group 3:
NOT classifiable as to its carcinogenicity to humans.
Evidence of carcinogenicity may be inadequate or limited in animal testing.

Acute Toxicity	\times	Carcinogenicity	\times
Skin Irritation/Corrosion	\checkmark	Reproductivity	\times
Serious Eye Damage/lrritation	\checkmark	STOT - Single Exposure	\checkmark
Respiratory or Skin sensitisation	\times	STOT - Repeated Exposure	\times

Mutagenicity	\mathbf{X}		Aspiration Hazard $\mid \times$
\mathbf{X} - Data either not available or does not fill the criteria for classification			
Legend:			

SECTION 12 Ecological information

Toxicity
Pola Professional 35\% Powder

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal	F DO NOT allow wash water from cleaning or process equipment to enter drains. " It may be necessary to collect all wash water for treatment before disposal. F In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. Consult State Land Waste Management Authority for disposal. Bury residue in an authorised landfill.

SECTION 14 Transport information

Marine Pollutant	NO
Land transport (DOT): NOT RE	ULATED FOR
Air transport (ICAO-IATA / DGR)	: NOT REGU
Sea transport (IMDG-Code / G	See): NOT
14.7.1. Transport in bulk acco Not Applicable	ing to Annex
14.7.2. Transport in bulk in accor	rdance with
Product name	Group
silica amorphous	Not Available
14.7.3. Transport in bulk in accosid	rdance with
Product name	Ship Type
silica amorphous	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

silica amorphous is found on the following regulatory lists
Chemical Footprint Project - Chemicals of High Concern List
International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic
International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)
US - Alaska Air Quality Control - Concentrations Triggering an Air Quality Episode for Air Pollutants Other Than PM-2.5
US - California - Biomonitoring - Priority Chemicals
US - California Proposition 65 - Carcinogens
US - California Safe Drinking Water and Toxic Enforcement Act of 1986 - Proposition 65 List
US - Massachusetts - Right To Know Listed Chemicals
US DOE Temporary Emergency Exposure Limits (TEELs)
US NIOSH Carcinogen List
US NIOSH Recommended Exposure Limits (RELs)
US OSHA Carcinogens Listing
US OSHA Permissible Exposure Limits (PELs) Table Z-1
US OSHA Permissible Exposure Limits (PELs) Table Z-3
US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory

Additional Regulatory Information

Not Applicable

Federal Regulations

Superfund Amendments and Reauthorization Act of 1986 (SARA)
Section 311/312 hazard categories

Flammable (Gases, Aerosols, Liquids, or Solids)	No
Gas under pressure	No
Explosive	No
Self-heating	No
Pyrophoric (Liquid or Solid)	No
Pyrophoric Gas	No
Corrosive to metal	No
Oxidizer (Liquid, Solid or Gas)	No
Organic Peroxide	No
Self-reactive	No
In contact with water emits flammable gas	No
Combustible Dust	No
Carcinogenicity	No
Acute toxicity (any route of exposure)	No
Reproductive toxicity	No
Skin Corrosion or Irritation	Yes
Respiratory or Skin Sensitization	No
Serious eye damage or eye irritation	Yes
Specific target organ toxicity (single or repeated exposure)	No
Aspiration Hazard	No
Germ cell mutagenicity	No
Simple Asphyxiant	No
Hazards Not Otherwise Classified	No

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4) None Reported

State Regulations

US. California Proposition 65

4 WARNING: This product can expose you to chemicals including silica amorphous, which is known to the State of California to cause cancer. For more information, go to www.P65Warnings.ca.gov

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	Yes
China - IECSC	Yes

National Inventory	Status
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZloC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory

SECTION 16 Other information

Revision Date		$20 / 08 / 2021$
Initial Date	$10 / 11 / 2015$	
SDS Version Summary	Date of Update	Sections Updated
Version	$01 / 11 / 2019$	One-off system update. NOTE: This may or may not change the GHS classification
7.1	$20 / 08 / 2021$	Classification change due to full database hazard calculation/update.
8.1		

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by SDI Limited using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

+ PC - TWA: Permissible Concentration-Time Weighted Average
- PC - STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit.
IDLH: Immediately Dangerous to Life or Health Concentrations
ES: Exposure Standard
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Leve
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
DNEL: Derived No-Effect Leve
PNEC: Predicted no-effect concentration
AIIC: Australian Inventory of Industrial Chemicals
DSL: Domestic Substances List
NDSL: Non-Domestic Substances List

- IECSC: Inventory of Existing Chemical Substance in China
- EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances
NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory
NZloC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances
TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory

- INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

- FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

The information contained in the Safety Data Sheet is based on data considered to be accurate, however, no warranty is expressed or implied regarding the accuracy of the data or the results to be obtained from the use thereof

Other information:

Prepared by: SDI Limited
3-15 Brunsdon Street, Bayswater Victoria, 3153, Australia
Phone Number: +61 38727711
Department issuing SDS: Research and Developmen
Contact: Technical Director

[^0]: Precautionary statement(s) Disposal
 P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

